SPATIAL HOMOGENEITY IN AN ATMOSPHERIC PROBLEM

Alexandre N. Carvalho ICMC-USP, Brazil

German Lozada-Cruz, IBILCE-UNESP, Brazil and

Marcos Roberto T. Primo, UEM-Maringá, Brazil

Abstract

Let $\Omega \subset \mathbb{R}^N$, $\mathbb{N} \ni N \ge 2$, be a bounded domain with smooth boundary $\Gamma := \partial \Omega$. Let Ω_i , $1 \le i \le n$, be a subdomains of Ω with smooth boundary Γ_i such that $\Gamma_i \cap \Gamma_j = \emptyset$, $1 \le i < j \le n$ and let $\Omega_0 = \Omega \setminus \bigcup_{i=1}^n \Omega_i$. Consider the following problem

$$\begin{cases} \frac{\partial G}{\partial t} &= \frac{K}{\varepsilon} \Delta G + f(G) \quad t > 0, \ x \in \Omega_{0} \\ \frac{K}{\varepsilon} \frac{\partial G}{\partial \vec{n}_{i}}(t,x) &= A_{i} - G \quad t > 0, \ x \in \Gamma_{i}, \ 1 \leqslant i \leqslant n \\ \frac{K}{\varepsilon} \frac{\partial G}{\partial \vec{n}}(t,x) &= 0, \quad x \in \Gamma \\ \frac{\partial A_{i}}{\partial t} &= \frac{K}{\varepsilon} \Delta A_{i} + g(A_{i}) \quad t > 0, \ x \in \Omega_{i}, \ 1 \leqslant i \leqslant n \\ \frac{K}{\varepsilon} \frac{\partial A_{i}}{\partial (-\vec{n}_{i})}(t,x) &= G - A_{i} \quad x \in \Gamma_{i}, \ 1 \leqslant i \leqslant n, \end{cases}$$
(1)

where $\frac{\partial G}{\partial \vec{n}} = \langle \nabla G, \vec{n} \rangle$, $\frac{\partial A_i}{\partial \vec{n}_i} = \langle \nabla A_i, \vec{n}_i \rangle$, \vec{n} is the normal vector to Γ point outward Ω , \vec{n}_i is the normal vector to Γ_i point inward Ω_i , $1 \leq i \leq n$. The nonlinearities $f, g: \mathbb{R} \to \mathbb{R}$ are locally Lipschitz functions. Assume without loss of generality that $|\Omega| = 1$. The problem (1) arise in atmospheric problems.

Our aim is to show that, for suitably small $\varepsilon > 0$, the asymptotic behavior of (1) is essentially the same as the asymptotic behavior of the following system of ordinary differential equations:

$$\begin{cases} \dot{G}(t) = f(G(t)) + \sum_{i=1}^{n} |\Gamma_i| (A_i - G) \\ \dot{A}_i(t) = g(A_i(t)) + |\Gamma_i| (G - A_i), \quad 1 \le i \le n. \end{cases}$$
(2)